
Compositional Verification of Concurrent C Programs
with Search Structure Templates

Duc-Than Nguyen
University of Illinois at Chicago

USA
dnguye96@uic.edu

Lennart Beringer
Princeton University

USA
eberinge@cs.princeton.edu

William Mansky
University of Illinois at Chicago

USA
mansky1@uic.edu

Shengyi Wang
Princeton University

USA
shengyiw@princeton.edu

Abstract
Concurrent search structure templates are a technique for
separating the verification of a concurrent data structure
into concurrency-control and data-structure components,
which can then be modularly combined with no additional
proof effort. In this paper, we implement the template ap-
proach in the Verified Software Toolchain (VST), and use it
to prove correctness of C implementations of fine-grained
concurrent data structures. This involves translating code,
specifications, and proofs to the idiom of C and VST, and
gives us another look at the requirements and limitations
of the template approach. We encounter several questions
about the boundaries between template and data structure,
as well as some common data structure operations that can-
not naturally be decomposed into templates. Nonetheless,
the approach appears promising for modular verification of
real-world concurrent data structures.

CCSConcepts: • Software and its engineering→ Formal
software verification.

Keywords: concurrent separation logic, fine-grained locking,
Iris, logical atomicity, interactive theorem proving, Verified
Software Toolchain
ACM Reference Format:
Duc-Than Nguyen, Lennart Beringer,WilliamMansky, and Shengyi
Wang. 2024. Compositional Verification of Concurrent C Programs
with Search Structure Templates. In Proceedings of the 13th ACM
SIGPLAN International Conference on Certified Programs and Proofs

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CPP ’24, January 15–16, 2024, London, UK
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0488-8/24/01
https://doi.org/10.1145/3636501.3636940

(CPP ’24), January 15–16, 2024, London, UK. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3636501.3636940

1 Introduction
Concurrent search structure templates [21] are a technique
for describing and implementing concurrency patterns (e.g.,
optimistic concurrency, hand-over-hand locking, forward-
ing via internal links) that can then be specialized to various
search data structures (e.g., linked list, hashtable, B-tree) com-
positionally. Krishna et al. [11] repurposed templates as a
compositional verification technique, separating the proof of
a concurrent access method from the proof of the underlying
data structure. The concurrency templates are verified para-
metrically over data structure operations, and the data struc-
ture operations are verified without any reference to concur-
rency. In theory, this could allow us to prove the correctness
of 𝑛 concurrency patterns and𝑚 (single-threaded) data struc-
ture implementations, and immediately obtain 𝑛×𝑚 verified
concurrent data structures. In practice, the story is more
complicated: certain patterns work only for specific data
structures or require the data structures to store extra infor-
mation, while some internal data structure operations may
not fit the template model.
In this paper, we apply search structure templates to the

problem of verifying C implementations of concurrent search
structures. The template approach was originally imple-
mented on top of flow interfaces [12], a framework for spec-
ifying and verifying graph-style data structures, in a com-
bination of two verifiers: the templates were verified in the
interactive Iris prover [9], while the data structure imple-
mentations were verified with the automated GRASShop-
per tool [18]. The target data structures were written in
HeapLang, a simple functional programming language with
shared-memory concurrency. We reimplement the approach
in the Verified Software Toolchain (VST) [1], an interactive
system for proving correctness of C programs based on a
detailed semantics of the C language, and apply it to an exist-
ing data structure implemented in C. The template approach
depends crucially on the idea of logical atomicity introduced

https://orcid.org/0000-0002-6810-897X
https://orcid.org/0000-0002-1570-3492
https://orcid.org/0000-0002-5351-895X
https://orcid.org/0000-0002-2286-8703
https://doi.org/10.1145/3636501.3636940
https://doi.org/10.1145/3636501.3636940

CPP ’24, January 15–16, 2024, London, UK Duc-Than Nguyen, Lennart Beringer, William Mansky, and Shengyi Wang

in TaDA [3] and further developed in Iris [9], and our proofs
make use of recent work integrating Iris-style logical atom-
icity into VST [14].

Our specific contributions are:

• We reimplement the template approach independently
of flow interfaces, with a simple interface involving
only the concept of “keys belonging in this node/sub-
structure”.

• We implement the template approach in VST, allowing
us to apply it to C programs and obtain end-to-end
correctness proofs in a single verification system.

• To the best of our knowledge, this is the first mecha-
nized verification of a template approach to concurrent
data structure implementations in a real-world pro-
gramming language, and its first application to data
structures not written specifically as case studies.

• We give a precise description of search structure tem-
plates, and identify places where it is difficult in prac-
tice to preserve the boundary between template and
data structure: for instance, both node creation and
rotation in binary search trees operate on concurrent
and data-structure-specific aspects in ways that do not
cleanly decompose.

Related Work
Recent years have seen major advances in concurrent sep-
aration logics (CSLs) for verifying fine-grained concurrent
programs, including Iris [9], VST [1, 14], FCSL [19], TaDA [3],
and VeriFast [7]. The innovations of Iris (custom ghost state)
and TaDA (logical atomicity) were particularly essential for
the formalization of the search structure template approach.
Some of the more complex data structures verified include
Java’s ConcurrentSkipListMap [25] and a multi-producer
multi-consumer concurrent queue from the Folly library [23].
Notably, VST is the only one of these systems that is all three
of 1) mechanized (i.e., implemented in a theorem prover), 2)
foundational (i.e., connected to a formal semantics of the tar-
get language), and 3) targeting an implementation language
(C) rather than a toy language or algorithmic representation.
For instance, Iris’s RustBelt instance [8] targets a core cal-
culus based on Rust’s intermediate language and has been
used to verify several interesting concurrent programs, but
does not provide guarantees about actual running Rust code.

Separating concurrency reasoning from data structure rea-
soning has long been an appealing target. Linearizability [6],
the most common correctness condition for concurrent data
structures, was a first step in this direction, describing the
conditions under which a concurrent implementation can
replace a sequential one in all possible contexts. Logical
atomicity has been shown to be a compositional analogue
to linearizability [2], where the proof that each operation
implements its sequential counterpart can be carried out in-
dependently. Concurrency templates can be seen as the next

step towards compositionality, allowing us to prove lineariz-
ability/atomicity of concurrency patterns independently of
specific data structures.
It is also worth mentioning recent work that extends the

reach of template-style reasoning. Later work on search
structure templates by Patel et al. [17] applies the template
approach to multicopy search structures, where there may
be more than one node containing the target key. Feldman
et al. [5] take an approach similar to templates to verify
search structures with highly optimistic concurrency pat-
terns, where the data structure may be restructured by other
threads during traversal. Their technique could potentially be
applied to prove correctness ofmuchmore complex traverse
operations than those we describe.

2 Background
2.1 Concurrent Search Structure Templates
A search structure is a data structure designed to efficiently
store and retrieve data based on specific search criteria. In
the abstract, a search structure implements a map from keys
to values, providing operations such as search, insertion,
deletion, and traversal on that map. For efficiency, many
search structures allow concurrent access and modification,
often employing fine-grained or lock-free concurrency to
allow as many threads as possible to operate on separate
parts of the data structure. Designing these search structures
presents significant challenges, including ensuring correct-
ness and consistency under concurrent access, achieving
scalability by minimizing contention and maximizing par-
allelism, and maintaining performance and efficiency while
managing synchronization and memory, including cache
behavior [15]. The complex interplay between concurrency
and data structure design in concurrent search structures
makes them challenging targets for formal verification.
The Concurrent Search Structure Template approach of

Krishna et al. [11] aims to make the problem tractable by
separating verification of concurrency control patterns from
verification of the underlying data structure. Addressing the
proof of each component separately makes the individual
proofs easier, and also offers the possibility of proof reuse:
each verified concurrency pattern (“template”) can be ap-
plied to many different data structures, and each verified
sequential data structure can be outfitted with many differ-
ent templates. In theory, verifying 𝑛 templates and𝑚 data
structures might yield 𝑛 ×𝑚 verified concurrent data struc-
tures; in practice, as we will see, both templates and data
structures make assumptions that may invalidate certain
combinations. As a side note, the example templates veri-
fied by Krishna et al. and the ones we present here focus
on synchronization via locks, but the approach also applies
to lock-free synchronization (as long as it is sequentially
consistent; weak-memory template reasoning has not yet
been investigated).

Compositional Verification of Concurrent C Programs with Search Structure Templates CPP ’24, January 15–16, 2024, London, UK

let rec traverse p n k =

match findNext n k with

| None -> (p, n)

| Some n' ->

lockNode n;

unlockNode p;

traverse n n' k

let insert r k =

lockNode r;

let n = traverse r r k in

let res = insertOp n k in

unlockNode n;

res

Figure 1. The lock-coupling search structure template

Figure 1 shows an example search structure template. The
core of the template is the traverse function, which uses a
specific concurrency control mechanism to travel through a
data structure in search of the requested key. The mechanism
in this example is lock coupling, where we acquire the lock on
the next node before releasing the lock on the current node.
The node to travel to is selected by a black-box function
findNext provided by the data structure; all the template
needs to know is that it has some way of choosing a next
node to examine. Once the appropriate node for the key has
been found, the template returns it to a top-level function
such as insert that calls out to the data structure to perform
the actual insertion on the node. Thus, the traverse and
insert functions can be verified without knowing anything
about the target data structure other than its synchroniza-
tion mechanism, as long as the data structure implements
findNext and insertOp operations with the required se-
mantics. The concurrency functions in the template and
the sequential findNext and insertOp functions provided
by the data structure combine into a fully operational con-
current data structure. Krishna et al. specify templates in
terms of flow interfaces [12], a framework for reasoning about
graph-structured data structures (i.e., those in which a node
may be reachable along multiple paths), but many common
search structures do not require flow-style reasoning; in this
paper, we present a version of templates that is independent
of flow interfaces.

2.1.1 Logical atomicity. We specify the concurrent be-
havior of search structures using logical atomicity [3, 9, 14],
a separation logic technique that concisely defines the be-
havior of concurrent operations. A logically atomic triple
has the form ∀𝑎.

〈
P𝑙 | P𝑝 (𝑎)

〉
c
〈
Q𝑙 | Q𝑝 (𝑎)

〉
, where P𝑙 and Q𝑙

are local preconditions and postconditions, akin to a stan-
dard Hoare triple, while P𝑝 and Q𝑝 are public preconditions
and postconditions, parameterized by an abstract value 𝑎 of
the shared data structure. Intuitively, this says that c is an
operation on an abstract object (i.e., data structure) 𝑎, and its

effect is to atomically transform 𝑎 from a state satisfying P𝑝
to a state satisfying Q𝑝 , with no intermediate states visible
to any other thread. More precisely, the triple asserts that if
P𝑙 holds true before a call to c and P𝑝 is true for some value
of 𝑎 in a shared state, then P𝑝 will continue to be true for
some (possibly different) value of 𝑎 until the linearization
point of c, at which point Q𝑝 will become true atomically for
the same value 𝑎 (and Q𝑙 will be true after c ends).
As an example, a sequential stack push operation could

conventionally be specified as

{stack(𝑠, 𝑝)} push(𝑝, 𝑣) {stack(𝑣 :: 𝑠, 𝑝)}
Its concurrent counterpart is canonically specified as

∀𝑠 .
〈
is_stack𝑔 (𝑝) | stack𝑔 (𝑠)

〉
push(𝑝, 𝑣)〈

is_stack𝑔 (𝑝) | stack𝑔 (𝑣 :: 𝑠)
〉

indicating that the push operation of a concurrent stack cor-
rectly implements the behavior of a sequential push, atomi-
cally transforming the stack from 𝑣𝑠 to 𝑣 :: 𝑣𝑠 at some point
during its execution. The stack itself is a shared resource,
and can only be accessed and modified atomically by threads
holding the corresponding is_stack assertion. The local and
shared assertions are connected by an arbitrary identifier 𝑔,
which we will generally omit when clear from context. Logi-
cal atomicity can be used to prove linearizability, the stan-
dard correctness condition for concurrent data structures—if
all of a data structure’s operations satisfy logically atomic
triples derived from the corresponding sequential operations,
the data structure is linearizable [2]. It can also be used to
specify more complex behavior of nonlinearizable data struc-
tures [4], but in this paper we will focus on linearizable data
structures and canonical specifications.
Logical atomicity is key to the template approach: each

template’s traverse function is proved to satisfy a logically
atomic specification that says roughly “this function finds the
node where key k belongs”. The traverse specification can
then be used to prove atomic specifications for the individual
data structure operations, lifting the sequential specifications
for insert, lookup, etc. to the concurrent setting.

2.2 Iris and VST
The search structure template approach uses concurrent
separation logic to specify and prove pre- and postcondi-
tions for the template and data structure functions. Krishna
et al. implemented their framework in Iris [9], a language-
independent CSL framework built in the Coq proof assis-
tant [22], with flexible support for ghost state, invariants,
and atomic specifications. This makes it easy to describe the
effects of concurrency control functions independently of the
underlying data structure, e.g., as “this function atomically
finds a node that contains the target key.” Algorithms are
verified in Iris’s HeapLang, a simple functional programming
language with shared-memory concurrency.

CPP ’24, January 15–16, 2024, London, UK Duc-Than Nguyen, Lennart Beringer, William Mansky, and Shengyi Wang

To apply the template approach to real-world code, we
instead use the Verified Software Toolchain (VST) [1], a
separation-logic-based verifier for C programs. VST is also
built in Coq and is connected to the CompCert verified C
compiler [13], allowing it to guarantee that proved proper-
ties will hold on compiled code. Recent work on VST [14]
extended it to support most of the advanced concurrency
features of Iris, including ghost state, invariants, and atomic
specifications. In this paper, we use these extensions to re-
construct the template approach in VST and apply it to real
C programs.

3 Search Structure Templates in VST
3.1 What is a Search Structure Template?
Krishna et al. [11] described the search structure template
approach and used it to verify (parts of) several concurrent
data structures. Their examples strongly suggest a systematic
approach to separating sequential data structure logic from
concurrent synchronization patterns. However, the approach
is not formally defined, and on closer inspection its inputs
and outputs are not identical across the example templates. In
this section, we attempt to precisely describe the pieces of the
search structure template approach, and how we can know
whether we have successfully verified a data structure given
a collection of verified sequential and concurrent functions.

A concurrent search structure is a data structure that sup-
ports three operations: insert, lookup, and delete. It is
intended to implement a map from keys to values, and to
behave correctly when accessed simultaneously by any num-
ber of threads. In separation logic, we can prove correctness
of a search structure by showing that its operations satisfy
the following logically atomic specifications, where Ref is a
per-thread handle to the data structure and Abs is a shared
assertion linking the values in memory to an abstract map
𝑚 from keys to values (we omit the ghost identifier 𝑔 con-
necting Ref and Abs, as described in section 2.1.1):

∀𝑚.
〈
Ref (r)

�� Abs (𝑚)
〉

insert(r, k, v)〈
Ref (r)

�� Abs (𝑚[k ↦→ v])
〉

∀𝑚.
〈
Ref (r)

�� Abs (𝑚)
〉

lookup(r, k)〈
v. Ref (r)

�� Abs (𝑚) ∧𝑚(k) = v
〉

∀𝑚.
〈
Ref (r)

�� Abs (𝑚)
〉

delete(r, k)〈
Ref (r)

�� Abs (𝑚[k ↦→ _])
〉

In other words, each operation takes effect atomically on the
abstract map𝑚, reading and/or updating it as appropriate
to the operation. Krishna et al. use flow interfaces [12] to
implement the Abs assertion connecting the data structure

implementation to the abstract map, but this is not funda-
mental to the approach: any definition of Ref and Abs that
can be used to prove the specifications (and is nontrivial, i.e.,
holds on the initial state of the data structure) will yield a
correct data structure.

insert lookup delete

traverse

insert lookup delete

traverse

insertOp ... findNext insertOp ... findNext

Template 1 Template 2

Data Structure 1 Data Structure 2

Figure 2. Diagram of the template approach. Each pair of
template and data structure should yield a verified concur-
rent data structure.

A search structure template is an implementation of these
three functions, written in a restricted way outlined in Fig-
ure 2. Aside from some top-level management code (e.g.,
acquiring and releasing an initial lock), all that each func-
tion should do is call two functions: a helper function called
traverse, which is specific to the template and implements
its synchronization mechanism, and a concurrency-unaware
function (e.g. insertOp) provided by the target data struc-
ture. (In fact, Krishna et al. implemented all three operations
as a single function decisiveOp, parameterized by a function
that takes the target operation type as input and performs the
appropriate data structure operation; for ease of adaptation
to C, we write three different functions, but their structures
are identical.) A template consists of an implementation of
the top-level operations and the traverse function used to
define them; a data structure consists of an implementation
of insertOp, etc., as well as a function findNext that is used
to implement traverse. The interface between them is a set
of standard specifications for insertOp, etc., and findNext:
if a template’s functions can be verified assuming these stan-
dard specifications, and a data structure’s implementations
can be shown to meet those specifications, then the template
and the data structure can be combined to yield a verified
concurrent search structure.

This is the theory behind the template approach to verifi-
cation. Unfortunately, it is not straightforward to realize in
practice. In the Coq development of Krishna et al., different
templates use slightly different specifications for data struc-
ture operations and findNext; the specifications proved for
data structure implementations do not always match those
used by templates (which is possible because they use sepa-
rate provers for the sequential and concurrent proofs); and
some data structures rely on other functions that do not

Compositional Verification of Concurrent C Programs with Search Structure Templates CPP ’24, January 15–16, 2024, London, UK

appear in the templates (e.g., maintenance operations that
split full nodes in B-trees). In the following presentation, we
follow the template plan as far as possible, noting the places
where we must deviate from the uniform approach; we dis-
cuss maintenance operations in further detail in Section 4.2.

3.2 Defining a Template
The core of a search structure template is a traverse func-
tion that navigates a data structure using the chosen syn-
chronization mechanism. A template also includes wrapper
functions that use traverse to perform data structure opera-
tions (insert, lookup, etc.), and may include helper functions
as well. The defining feature of all these functions is that
they abstract away from the data structure being traversed:
they operate on a generic node type and take data-structure-
specific functions like findNext (which chooses the next
node to search) as parameters. We consider lock-based syn-
chronization in this paper, and so our generic node type can
be defined in C as:

typedef struct node_t {

node *t;

lock_t *lock;

} node_t;

There are two things worth noting about this data structure.
First, each node has its own lock: all of our templates will
use fine-grained locking, holding locks on as few nodes as
possible to allow other parts of the data structure to be modi-
fied concurrently. Second, the node struct itself is defined by
the target data structure: for instance, a binary search tree
might define it as

typedef struct node {

int key;

void *value;

struct node_t *left , *right;

} node;

while a linked list might use
typedef struct node {

int key;

void *value;

struct node_t *next;

} node;

This is the first place where we decompose our program
into a generic concurrent component and a sequential data-
structure component. Next, we use node_t to define template
functions for specific concurrency patterns, and then prove
(assuming appropriate specifications for data-structure-specific
functions) that they correctly implement the data structure
operations.

3.3 Lock-Coupling Template
The first template we consider is lock coupling (also called
hand-over-hand locking), in which threads use the locks on
each node to prevent interference from other threads during

traversal. Each thread always holds at least one lock, and
acquires the lock on the next node before releasing its cur-
rent lock, ensuring that other threads cannot invalidate the
ongoing search. Figure 3 shows the lock-coupling traverse
function as presented by Krishna et al. (Figure 3a) and our
corresponding C implementation (Figure 3b). The C imple-
mentation uses a struct

typedef struct pn {

struct node_t *p;

struct node_t *n;

} pn;

to mimic the pair of nodes (p, n) returned by the functional
implementation, where n is the current node and p is its
parent. The template relies on one function provided by
the underlying data structure, namely findNext, which is
used to determine the next node n’ to be visited based on
the current node n and the key k. In the functional version,
findNext returns an option node; in C, it instead returns
a Boolean and, if a next node is found, modifies pn->n.

Our implementation of traverse translates the functional
implementation into idiomatic C code. The lock-coupling
pattern can be seen on lines 12-13, where traverse acquires
the next node’s lock and then releases the current node’s
lock. The function stops when it reaches an empty node
(pn->p->t == NULL), or when findNext returns 0, indicat-
ing that the target key k is in the current node. The traverse
function returns 1 when we reach an empty node and 0 when
we find k in an existing node; the behavior of operations
that call traverse can vary depending on this return value.
For instance, an insert operation may create a new node
when traverse returns 1 and modify an existing node when
traverse returns 0, while a lookup operation may fail on 1
and return the value in the current node on 0.
Figure 3c shows the implementation of insert for the

lock-coupling template. It uses traverse to find the node
at which to insert the key k. If traverse returns 0, it has
reached a node containing key k, and we only have to change
the node’s value to the target value (lines 5-6 in Figure
3c). Otherwise, traverse has reached an empty node that
can hold key k, so it calls the underlying data structure’s
insertOp function to allocate a new node with key k and
value v (line 9 in Figure 3c).

3.3.1 Verifying the Lock-CouplingTemplate. Weprove
correctness of the template by showing that traverse,
insert, etc. meet logically atomic specifications describing
their effects on the data structure. These specifications are de-
fined in terms of assertions Ref, representing a client thread’s
handle to the data structure, and Abs, representing the data
structure’s abstract state. We also have an assertion In(𝑛)
that serves as a reference to an individual node; Ref should
include, at minimum, the In assertion for the root node. Hold-
ing In(𝑛) for a node 𝑛 should allow us to acquire the lock on

CPP ’24, January 15–16, 2024, London, UK Duc-Than Nguyen, Lennart Beringer, William Mansky, and Shengyi Wang

1 let rec traverse p n k =

2 match findNext n k with

3 | None -> (p, n)

4 | Some n' ->

5 lockNode n;

6 unlockNode p;

7 traverse n n' k

(a) The traverse method of the lock-coupling template algorithm
written in an ML-like language [10]

1 void insert (node_t **r, int k, void *v){

2 struct pn *pn = (struct pn*) surely_malloc(sizeof

*pn);

3 pn ->n = *r;

4 acquire(pn ->n->lock);

5 if (traverse(pn, k) == 0){

6 pn ->p->t->value = v;

7 }

8 else{

9 insertOp(pn, k, v);

10 }

11 release(pn ->n->lock);

12 free(pn);

13 }

(c) The insert method of the lock-coupling template algorithm
written in C

1 int traverse(pn *pn, int k){

2 for(; ;){

3 pn->p = pn->n;

4 if (pn->p->t == NULL)

5 return 1;

6 else{

7 int b = findNext(pn, k);

8 if (b == 0){

9 return 0;

10 }

11 else{

12 acquire(pn ->n->lock);

13 release(pn ->p->lock);

14 }

15 }

16 }

17 }

(b) The traverse method of the lock-coupling template algo-
rithm written in C

Figure 3. The traverse method of the lock-coupling template algorithms

𝑛, which in turn gives us access to the contents of the node.
Formally, we need to know that the following triples hold:

⟨In (𝑛) | Abs (𝑚)⟩
acquire (𝑛->lock)

⟨In(𝑛) ∗ R(𝑛) | Abs (𝑚)⟩

⟨In (𝑛) ∗ R(𝑛) | Abs (𝑚)⟩
release (𝑛->lock)
⟨In(𝑛) | Abs (𝑚)⟩

In other words, In(𝑛) is sufficient to guarantee that node
𝑛 is in the abstract state of the data structure and its lock
protects associated resources R(𝑛), the lock invariant for the
node, which we will soon describe in detail.

The traverse function can then be specified as follows:

∀𝑚. ⟨ pn ↦→ (𝑝, 𝑛) ∗ In(𝑛) ∗ R(𝑛)
��� Abs (𝑚)⟩

traverse(pn, k)

⟨ res. ∃ 𝑛′, 𝑣, range.
pn ↦→ (𝑛′, 𝑛′) ∗ In (𝑛′) ∗ k ∈ range ∗
if res then node_contents(𝑛′, ·, range)

else node_contents(𝑛′, (k, 𝑣), range)

����� Abs (𝑚)⟩
The local precondition of traverse includes both the node

handle In(𝑛) and its contents R(𝑛), indicating that a thread
should already hold 𝑛’s lock before calling traverse. The
output of traverse is a new node 𝑛′ in the data structure
such that the key k falls within the range of𝑛′. The local post-
condition then includes the handle of the new node In(𝑛′),

its contents node_contents(𝑛′, ...), and a Boolean variable
res indicating whether traverse found an empty node or a
node with key k (which is reflected in the remaining argu-
ments to node_contents).
The resources R contained in a node depend on the spe-

cific data structure, but always include a piece of ghost state
describing the current state of the node (its key, value, and
key range) shared between the invariant R and the abstract
state Abs, ensuring that the lock and the abstract state agree
on the contents of the node. Formally, the lock invariant is
defined by

node_contents(𝑛, 𝑐, range) ≜
ghost_node(𝑛, 𝑐, range) ∗ node_data(𝑛, 𝑐)

R(𝑛) ≜ ∃ 𝑐, range. node_contents(𝑛, 𝑐, range)

where the definition of node_data is supplied by the target
data structure. The contents 𝑐 of a node can be either a key-
value pair (𝑘, 𝑣), or the empty contents · (used for nodes
that have been allocated but not yet assigned keys). Then
Abs (𝑚) is defined as a collection of ghost_nodes that form
a tree containing all the key-value pairs in𝑚.

The key to the correctness of the traverse function is the
loop invariant for the top-level loop, which expresses that in

Compositional Verification of Concurrent C Programs with Search Structure Templates CPP ’24, January 15–16, 2024, London, UK

each iteration, traverse holds the lock on a node that has k
in its range:

traverse_inv(pn, k) ≜
∃ 𝑝, 𝑛, 𝑐, range. pn ↦→ (𝑝, 𝑛) ∗ k ∈ range ∗

In(𝑛) ∗ node_contents(𝑛, 𝑐, range)

Figure 4 shows the proof outline of the traverse function.
We begin by checking whether the current node is null (line
5 of Figure 4); if it is, we have found the empty node where
k belongs, and can prove the postcondition with res = true.
Otherwise, we pass the node_data from the lock invariant
to findNext (line 11), which returns a new node 𝑛′′ to visit,
stored in pn->n. If findNext returns 0, we have found a
node containing k, and can prove the postcondition with
res = false. Otherwise, we acquire 𝑛->lock, gaining access
to the resources R(𝑛), and then release the lock of the current
node 𝑝 and return its resources. By acquiring the lock for
the next node 𝑛 before releasing the lock for the current
node 𝑝 , we ensure that the connection between the two
nodes remains intact and unaltered while we traverse it, and
re-establish traverse_inv for the new values in pn. The two
returns are also the two possible linearization points of the
function.
The insert function uses this specification of traverse

to update the state of the data structure. The desired specifi-
cation of insert is:

∀𝑚.
〈
Ref (r)

�� Abs (𝑚)
〉

insert(r, k, v)〈
Ref (r)

�� Abs (𝑚[k ↦→ v])
〉

where 𝑚 and 𝑚[k ↦→ v] denote the tree’s abstract states
before and after the function’s execution, respectively. The
proof of insert is outlined in Appendix A, but informally it
is quite simple. We begin by initializing the pn struct with the
root node and acquiring its lock, allowing us to satisfy the
precondition of traverse. If traverse returns 0, we have
found a node with key k, and all we need to do is update that
node’s value to v (line 6 in Figure 3c). Otherwise, traverse
has reached an empty node with k in its range. We then call
the data-structure-specific insertOp function, which inserts
the new key-value pair at the empty node. In either case,
before we release the node’s lock, wemust show that we have
altered the tree from its current abstract state𝑚 to𝑚[k ↦→ v],
thereby satisfying the public postcondition of insert. We
do this by demonstrating that in both cases, the update to
the concrete data structure corresponds to setting k to v in
the abstract key-value map of the data structure. Finally, we
release the lock acquired by traverse and deallocate the pn
structure.

3.4 Give-Up Template
We next consider the give-up template, which uses an opti-
mistic concurrency control approach, acquiring fewer locks

at the cost of sometimes having to recover from synchro-
nization errors. Unlike the lock-coupling template, which
maintains locks during traversal between nodes, the give-
up template only acquires a lock just before operating on a
node, and holds at most one lock at any time. This means
that a conflicting operation may invalidate a traversal, for
instance by moving the next node to another part of the data
structure before we acquire its lock. To guard against this,
the traverse function must explicitly check whether the
target key is in the range of the current node. If a check fails,
we give up and start the traversal over from the root node.
The give-up template performs well in scenarios where op-
erations generally do not conflict, either because they are on
independent parts of the data structure or because they do
not delete or relocate nodes.
Figure 5a shows the give-up template algorithm as origi-

nally presented. In addition to findNext, the traverse func-
tion uses a helper function called inRange, which determines
whether the key value k falls within the range of keys held
in node n and its successors. Logically, this range is the same
as the range in the lock-coupling template, but that range
was a ghost-state construct that only appeared in the proofs;
in the give-up template, the range must be stored in memory
and checked in the code. If k is outside the node’s range (e.g.
because the node has been relocated), the search is restarted
from the root node r. As in the previous section, we imple-
ment this in C with a loop: in each iteration, we acquire
the lock on the current node, check that k is in range, and
then use findNext as above, releasing the lock before we
move to the next node. If the inRange call fails, we release
our current lock and return to the root node by setting the
current node to the root pointer p (lines 21-22 in Figure 5b).
The give-up version of the insert operation (see Figure 5c)
is almost identical to the lock-coupling version, except that
it does not acquire a lock before calling traverse.

The inRange function raises an interesting question about
the template approach: is inRange part of the give-up tem-
plate, or the underlying data structure? Some data structures
may already track the range of keys expected in the current
node, and so might define inRange even in sequential imple-
mentations. However, in most sequential settings ranges can
be computed from the data structure (e.g., in a binary search
tree, the left subtree of a node with key k holds keys less
than k), and there is no reason to explicitly store a node’s
range in the node itself. The give-up template of Krishna
et al. implicitly assumes that the underlying data structure
supports inRange; we prefer to consider inRange part of the
template, so that the template can be applied to data struc-
tures without modifying them. Accordingly, in this template
we add two new fields, min and max, to the type node_t:

typedef struct node_t {

node *t; lock_t *lock;

int min , max;

} node_t;

CPP ’24, January 15–16, 2024, London, UK Duc-Than Nguyen, Lennart Beringer, William Mansky, and Shengyi Wang

∀𝑚.
〈
pn ↦→ (𝑝, 𝑛) ∗ In(𝑛) ∗ R(𝑛)

�� Abs (𝑚)
〉

1 int traverse(pn *pn, int k){

2
{

pn ↦→ (𝑝,𝑛) ∗ In(𝑛) ∗ R(𝑛)
}
⇛

{
traverse_inv

}
3 for(; ;){

{
traverse_inv(pn)

}
4 pn ->p = pn->n;

5
{

pn ↦→ (𝑛′, 𝑛′) ∗ In(𝑛′) ∗ k ∈ range ∗ node_contents(𝑛′, 𝑐, range)
}

6 if (pn->p->t == NULL)

7 return 1;

8
{

pn ↦→ (𝑛′, 𝑛′) ∗ In(𝑛′) ∗ k ∈ range ∗ node_contents(𝑛′, ·, range)
}

9 else{

10
{

pn ↦→ (𝑛′, 𝑛′) ∗ In(𝑛′) ∗ k ∈ range ∗ node_contents(𝑛′, (𝑘 ′, 𝑣′), range)
}

11 int b = findNext(pn, k);

12
{

∃ 𝑛′′ . pn ↦→ (𝑛′, 𝑛′′) ∗ In(𝑛′) ∗ k ∈ range ∗ node_contents(𝑛′, (𝑘 ′, 𝑣′), range) ∗
((b = 0 ∗ 𝑘 ′ = k ∗ 𝑛′′ = 𝑛′) ∨ (b = 1 ∗ k ∈ range (𝑛′′) ∗ In(𝑛′′)))

}
13 if (b == 0){

14
{

pn ↦→ (𝑛′, 𝑛′) ∗ 𝑘 ′ = k ∗ · · ·
}

15 return 0;

16
{

pn ↦→ (𝑛′, 𝑛′) ∗ In(𝑛′) ∗ k ∈ range′ ∗ node_contents(𝑛′, (k, 𝑣′), range′)
}

17 }

18 else{

19
{

pn ↦→ (𝑛′, 𝑛′′) ∗ In(𝑛′) ∗ k ∈ range (𝑛′′) ∗ R(𝑛′) ∗ In(𝑛′′)
}

20 acquire(pn->n->lock);

21
{

pn ↦→ (𝑛′, 𝑛′′) ∗ In(𝑛′) ∗ k ∈ range (𝑛′′) ∗ R(𝑛′) ∗ In(𝑛′′) ∗ R(𝑛′′)
}

22 release(pn->p->lock);

23
{

pn ↦→ (𝑛′, 𝑛′′) ∗ k ∈ range (𝑛′′) ∗ In(𝑛′′) ∗ R(𝑛′′)
}

24 }

25 }

26 }

27 } 〈
res. ∃ 𝑛′, 𝑣 .

pn ↦→ (𝑛′, 𝑛′) ∗ In(𝑛′) ∗ k ∈ range ∗
if res then node_contents(𝑛′, ·, range)

else node_contents(𝑛′, (k, 𝑣), range)

����� Abs (𝑚)
〉

Figure 4. Proof outline of the lock-coupling traverse function

These fields store lower and upper bounds on the keys reach-
able from the current node. We can then define inRange as
a helper function in the template, rather than requiring data
structures to provide it. Our specification of inRange is:

{
pn->n->min ↦→ 𝑛1 ∗ pn->n->max ↦→ 𝑛2

}
inRange(pn, k){

res.
pn->n->min ↦→ 𝑛1 ∗ pn->n->max ↦→ 𝑛2 ∗

if res then (𝑛1 < k < 𝑛2) else (k ≤ 𝑛1 ∨ k ≥ 𝑛2)

}

It simply computes whether the input key k is in the range
(𝑛1, 𝑛2) associated with the node n, and returns 0 or 1 ac-
cordingly.

3.4.1 Verifying theGive-UpTemplate. The give-up tem-
plate’s traverse specification is almost the same as in the
lock-coupling template, except that the caller does not need

to hold any locks before calling it, so the invariant R does
not appear in the precondition:

∀𝑚. ⟨ pn ↦→ (𝑝, 𝑛) ∗ In(𝑛)
��� Abs (𝑚)⟩

traverse(pn, k)

⟨ res. ∃ 𝑛′, 𝑣, range.
pn ↦→ (𝑛′, 𝑛′) ∗ In (𝑛′) ∗ k ∈ range ∗
if res then node_contents(𝑛′, ·, range)

else node_contents(𝑛′, (k, 𝑣), range)

����� Abs (𝑚)⟩
As before, the traverse function will navigate the struc-

ture and return a node 𝑛′ whose range includes k, as well as
acquiring 𝑛′’s lock and returning its contents. Also as before,
the Boolean res indicates whether 𝑛′ is empty or contains the
key k. Our definition of Abs for the give-up template closely
follows that of Krishna et al.

Compositional Verification of Concurrent C Programs with Search Structure Templates CPP ’24, January 15–16, 2024, London, UK

1 let rec traverse r n k =

2 lockNode n;

3 if inRange n k then

4 match findNext n k with

5 | None -> n

6 | Some n' -> unlockNode n;

7 traverse n' k

8 else

9 unlockNode n;

10 traverse r r k

(a) The traversemethod of the give-up template algorithm written
in an ML-like language

1 void insert (node_t **r, int k, void *v){

2 struct pn *pn = (struct pn *) surely_malloc (

sizeof *pn);

3 pn ->n = *r;

4 if (traverse(pn, k) == 0){

5 pn ->p->t->value = v;

6 }

7 else{

8 insertOp(pn, k, v);

9 }

10 release(pn ->n->lock);

11 free(pn);

12 }

(c) The insert method of the give-up template algorithm written
in C

1 int traverse(pn *pn, int k){

2 node_t *r = (pn->n);

3 for(; ;){

4 acquire(pn->n->lock);

5 pn->p = pn->n;

6 if (inRange(pn, k) == 1){

7 if (pn->p->t == NULL)

8 return 1;

9 else{

10 int b = findNext(pn, k);

11 if (b == 0){

12 return 0;

13 }

14 else

15 release(pn->p->lock);

16 }

17 }

18 else{

19 release(pn->p->lock);

20 pn->n = r;

21 }

22 }

23 }

(b) The traverse method of the give-up template algorithm
written in C

Figure 5. The traverse and insert methods of the give-up template algorithms

Next, we define the loop invariant for the give-up tem-
plate’s traverse function:

traverse_inv(pn) ≜
∃ 𝑝, 𝑛. pn ↦→ (𝑝, 𝑛) ∗ In(r) ∗ In(𝑛)

Unlike the lock-coupling case, we do not hold any locks be-
tween iterations of the loop body, and we do not maintain the
fact that k is in the range of the current node (we must check
this later with inRange). Instead, we keep a reference In(r)
to the root node, so that we can return to it if an inRange
check fails.
With this invariant in hand, the proof of traverse pro-

ceeds as follows. We begin by using the In predicate to ac-
quire the lock on pn->n (line 4 in Figure 5b). We then call
inRange to check whether we are still on the path to a node
that can hold k. If the check fails (lines 18-20), we imme-
diately release the lock and start over from the root node
r. Otherwise, we proceed as in the lock-coupling template:
if the current node’s contents are NULL, we have found the
empty node where k belongs (and can satisfy the postcon-
dition); if findNext returns 0, we have found the node con-
taining k (and can satisfy the postcondition); otherwise, we

release the lock and re-establish traverse_inv for the new
node indicated by findNext. In this case, we once again
hold no locks, and have only the In assertion indicating that
the new node is in the data structure.
The specification of the insert function is the same as

for the lock-coupling template, and its proof is quite similar
as well. The fact that the give-up version of insert does
not acquire a lock before calling traverse is reflected in the
difference in the precondition of traverse between the two
templates. Proof outlines for the give-up template functions
can be found in Appendix A.

4 Verifying Binary Search Trees using
Templates

In this section, we demonstrate how to instantiate the tem-
plates with specific data structures, giving us verified C im-
plementations of concurrent data structures. As we saw in
the previous section, the top-level specifications of data struc-
ture operations have already been verified at the template
level; all we need to do now is provide implementations of
data-structure-specific functions (e.g. findNext) that satisfy
the right specifications to instantiate the template proofs.

CPP ’24, January 15–16, 2024, London, UK Duc-Than Nguyen, Lennart Beringer, William Mansky, and Shengyi Wang

Once we have chosen a template and a data structure, we
should not need to do any further reasoning about specific
concurrency patterns.
Our target data structure is a binary search tree (BST)

implemented in C. A lock-coupling BST was already writ-
ten verified as a demonstration of VST’s concurrency ca-
pabilities [20]. We refactored it into findNext, traverse,
insertOp, etc. as required by the template approach, and
then re-verified it using the template; we then replaced
traversewith the give-up version and verified the resulting
give-up BST as well. We were able to obtain verified insert
and lookup operations using this technique; for delete, we
found a mismatch between the template approach and BST
deletion, which we discuss in Section 4.2.

4.1 Instantiating findNext and insertOp

We instantiate the templates with the binary search tree by
defining and verifying the helper functions findNext (used
in traverse) and insertOp (used in insert). As expected,
their implementations are strictly sequential, their specifi-
cations are ordinary non-atomic Hoare triples (see Figures
6 and 7), and their proofs do not require any concurrency
reasoning.

The contents of a BST node are defined in C as:

typedef struct node {

int key;

void *value;

struct node_t *left , *right;

} node;

The BST’s findNext function (Figure 8) indicates whether
the target key is in the current node, its left subtree, or its
right subtree. The precondition of findNext (Figure 6) states
that the input has a non-null t field pointing to a node struct
with key 𝑘 ′, value 𝑣 ′, and pointers to the left 𝑙 and right
𝑟 child nodes. The postcondition describes three possible
outcomes: either the provided key k is less than the node’s
key 𝑘 ′, and the next node 𝑛′ is the left child 𝑙 ; k is greater
than 𝑘 ′ and 𝑛′ is the right child 𝑟 ; or k is exactly 𝑘 ′ and 𝑛′ is
the original node 𝑛, in which case the return value is 0. The
proof is straightforward.

The BST’s insertOp function allocates a new node struct
at an empty leaf, as well as two new empty leaves to serve as
its children. The insertOp specification (Figure 7a) takes as
input a node whose t field is NULL, i.e., an empty leaf node.
It inserts a new node with the specified key k and value v
at that leaf, complete with two new empty child nodes with
corresponding locks, (NULL, lk1) and (NULL, lk2), which are
pointed to by the 𝑙 and 𝑟 of the current node.

Unfortunately, while this specification suffices for the lock-
coupling template, it cannot be used as is for the give-up
template: because we allocate new empty leaf nodes, we
must allocate node_t structures, whose implementation in
the give-up template has extra fields that do not appear in

the lock-coupling template. As shown in Figure 7b, a give-
up template node (even an empty one!) has additional min
and max fields, and these fields are needed to compute the
bounds of the new child nodes. In a BST, if the current node’s
range is (min, max) and its key is k, its left child will have
range (min, k) and its right child will have range (k, max).
It may be possible to remedy this discrepancy by adding
an “allocate empty node” function to the templates, which
is then called by insertOp, but this would still complicate
the approach: originally, we expected that templates would
be parameterized by data structure implementations but
not vice versa. However, this two-way dependency seems
fundamental when the layout of the node structure depends
on the concurrency control mechanism we choose. For now,
we break the abstraction boundary and verify two different
versions of insertOp, one for the lock-coupling template and
one for the give-up template, which reduces the proof-reuse
benefits of the template approach.

4.2 Templates and Internal Reorganization
The delete operation on binary search trees highlights a
limitation of the template approach as we have described
it. The insert and lookup operations can be factored into
a data-structure-agnostic concurrent step (traverse) and
a concurrency-unaware data structure step (insertOp or
lookupOp). In most of the prior template examples, deletion
can be decomposed similarly, by traversing to the node to be
deleted, acquiring its lock and possibly its parent’s lock, and
then performing a local, sequential data-structure-specific
operation. When removing a node from a BST, on the other
hand, we usually restructure the tree with a pushdown_left
operation, rotating three-node sections of the tree until the
node to be deleted is at a leaf. This operation is simultane-
ously concurrency-aware (we must lock the nodes involved
to avoid race conditions) and data-structure-specific (we
need to know precisely which nodes to target and how to
rearrange them).
Krishna et al. also discuss an operation of this sort, the

split operation in B-link trees. Their approach is to assume
the existence of a separate maintenance thread that con-
stantly crawls the tree searching for full nodes and splitting
them; any operation that cannot take effect on full nodes
can simply retry until the target node is split. The split it-
self is a no-op on the abstract state of the data structure:
it makes internal structural changes but does not change
the set of keys stored in the tree. Maintenance operations
of this sort appear in almost every reasonably complex con-
current data structure, and so the template approach must
account for their existence. In other words, in general the
template approachmust divide the operations of a target data
structure into three categories: concurrent, data-structure-
agnostic template operations, which can be verified once and
applied to multiple data structures; sequential data structure

Compositional Verification of Concurrent C Programs with Search Structure Templates CPP ’24, January 15–16, 2024, London, UK

{
pn->n->t ↦→ (𝑘 ′, 𝑣 ′, 𝑙, 𝑟)

}
findNext(pn, k){

res. ∃ 𝑛′ .
pn->n->t ↦→ (𝑘 ′, 𝑣 ′, 𝑙, 𝑟) ∗

if res then (𝑙 = 𝑛′ ∧ k < 𝑘 ′) ∨ (𝑟 = 𝑛′ ∧ k > 𝑘 ′) else (𝑛 = 𝑛′ ∧ k = 𝑘 ′)

}
Figure 6. Specification of findNext for the binary search tree (all templates){

pn->n ↦→ NULL
}

insertOp(pn, k, v){
∃ 𝑙 𝑟 lk1 lk2.

pn->n->t ↦→ (k, v, 𝑙, 𝑟) ∗
𝑙 ↦→ (NULL, lk1) ∗ 𝑟 ↦→ (NULL, lk2)

}
(a) Specification of insertOp for the lock-coupling template{
pn->n ↦→ NULL ∗ pn->n->min ↦→ 𝑛1 ∗ pn->n->max ↦→ 𝑛2

}
insertOp(pn, k, v){

∃ 𝑙 𝑟 lk1 lk2.
pn->n->t ↦→ (k, v, 𝑙, 𝑟) ∗ pn->n->min ↦→ 𝑛1 ∗ pn->n->max ↦→ 𝑛2 ∗

𝑙 ↦→ (NULL, lk1, (𝑛1, k)) ∗ 𝑟 ↦→ (NULL, lk2, (k, 𝑛2))

}
(b) Specification of insertOp for the give-up template

Figure 7. Specification of insertOp for the lock-coupling and give-up templates

1 int findNext (pn *pn, int k){

2 int y = pn ->p->t->key;

3 if (k < y){

4 pn ->n = pn->p->t->left;

5 return 1;

6 }

7 else if (k > y){

8 pn ->n = pn->p->t->right;

9 return 1;

10 }

11 else

12 return 0;

13 }

Figure 8. C implementation of findNext for the binary
search tree (all templates)

operations, which can be verified once and plugged into mul-
tiple templates; and no-op maintenance operations, which
are both concurrency-aware and data-structure-specific, but
whose specifications leave the abstract state unchanged. For
instance, rotation in the BST can be seen as a maintenance
operation, and the deletion of a node that has already been ro-
tated to a leaf position is a sequential, data-structure-specific
operation. Rebalancing operations in AVL and red-black trees
would also be considered maintenance operations. The exis-
tence of this third category means that we cannot completely
separate concurrency reasoning from data structure reason-
ing, but because maintenance operations are logical no-ops,

they should be easier to verify in a non-decomposed style
than most concurrent data structure operations.

5 Proof Mechanization
All the proofs described above have been mechanized in VST,
using its extensions for logical atomicity [14]. Statistics on
the verification effort are shown in Table 1.

Lock coupling LoC Give up LoC
Specifications 190 Specifications 138
findNext proof 27 findNext proof 27
insertOp proof 32 insertOp proof 31

inRange proof 30
traverse proof 360 traverse proof 336
insert proof 450 insert proof 284
lookup proof 235 lookup proof 304
pushdown_left proof 282
delete proof 182
Supporting proofs 1909 Supporting proofs 1876
Total 3667 3026
Table 1. Size of Coq definitions and proofs, by topic.

The total lines of code required were about the same as for
the original VST verification of the BST. The vast majority
of the proof effort was in the templates, in both traverse
and the top-level data structure operations. This is fairly
encouraging, since this proof effort should be reusable for
other data structures that use the same templates. For lock-
coupling deletion, we retained the original (non-templated)

CPP ’24, January 15–16, 2024, London, UK Duc-Than Nguyen, Lennart Beringer, William Mansky, and Shengyi Wang

proofs; we did not verify give-up deletion, since optimistic
deletion is considerably harder to reason about and did not
stand to benefit from the template approach. Proving the
correctness of e.g. a lock-coupling linked list should be as
simple as defining a new node struct, and then implementing
and verifying findNext and insertOp (plus the appropriate
functions for deletion).

Compared to prior template proofs in Iris and GRASShop-
per, our proof development is significantly larger (although
direct comparison is difficult, since GRASShopper is an au-
tomatic prover). The biggest structural difference is that we
need to directly state loop invariants for our imperative code,
while the Iris proofs handle recursion with a simpler Löb-
induction approach. Coming up with the loop invariants was
the hardest part of the proofs. Our proofs also deal with the
details of real C code: proving absence of integer overflows,
accurately representing struct-and-pointer-based data struc-
tures instead of functional-programming-style structured
data, etc. In exchange for this extra effort, the code we verify
constitutes complete C programs that can be compiled and
executed. The full development of our mechanization effort
is available online at https://zenodo.org/record/8337004.

6 Conclusion and Future Work
Concurrent search structure templates are a promising ap-
proach for proving the correctness of concurrency patterns
and data structures separately, and then combining them to
obtain verified concurrent data structures. We have trans-
lated the approach to apply to C programs using VST, with
appropriate imperative versions of the key traverse func-
tions that define the templates, and used it to prove the cor-
rectness of an (appropriately refactored) existing concurrent
data structure. However, the translation also exposed some
ambiguities and limitations in the approach: for instance,
the inRange function of the give-up template must either
be assumed to exist in the data structure or incorporated
into the template, and the delete operation of binary search
trees does not decompose naturally into a concurrent part
and a data-structure-specific part. Templates still allow us to
reuse proofs across data structures and concurrency patterns,
but not as completely as the theoretical approach suggests.

The next step is to implement templates as a truly generic
framework, with proofs of traverse, etc. that can be freely
combined with verified sequential data structures via a clear
interface that defines the functions a data structure must
provide and the assumptions the template makes on them
(e.g., by verifying template functions with respect to a data-
structure typeclass). We are also interested in verifying tem-
plates that use atomic operations instead of locks, as is com-
mon in optimistic concurrency control. Ultimately, we hope
to use the template approach to verify data structures such
as Masstree [15] and Wormhole [24], complicated real-world

search structures that combine multiple concurrency pat-
terns for maximum performance on multicore architectures.

Acknowledgments
We thank Roshan Sharma, Alex Oey, and Anastasiia Evdoki-
mova for extensive work on the original binary search tree
implementation and verification, and the anonymous review-
ers for providing comprehensive and insightful reviews. This
work was partially funded by the National Science Founda-
tion under the award 1005849 (Verified High Performance
Data Structure Implementations, Beringer & Mansky) and
the Defense Advanced Research Projects Agency (DARPA)
under contract HR001120C0160.

Data Availability Statement
The artifact for this paper is available online [16]. The latest
version of the development can be found onGitHub at https://
github.com/PrincetonUniversity/DeepSpecDB/tree/master/
concurrency/templates.

References
[1] Andrew W. Appel, Robert Dockins, Aquinas Hobor, Lennart Beringer,

Josiah Dodds, Gordon Stewart, Sandrine Blazy, and Xavier Leroy. 2014.
Program Logics for Certified Compilers. Cambridge University Press.

[2] Lars Birkedal, Thomas Dinsdale-Young, Armaël Guéneau, Guilhem
Jaber, Kasper Svendsen, and Nikos Tzevelekos. 2021. Theorems for
Free from Separation Logic Specifications. Proc. ACM Program. Lang. 5,
ICFP, Article 81 (aug 2021), 29 pages. https://doi.org/10.1145/3473586

[3] Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner.
2014. TaDA: A Logic for Time and Data Abstraction. In ECOOP 2014
– Object-Oriented Programming, Richard Jones (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 207–231.

[4] Hoang-Hai Dang, Jaehwang Jung, Jaemin Choi, Duc-Than Nguyen,
William Mansky, Jeehoon Kang, and Derek Dreyer. 2022. Compass:
Strong and Compositional Library Specifications in Relaxed Memory
Separation Logic. In Proceedings of the 43rd ACM SIGPLAN International
Conference on Programming Language Design and Implementation (San
Diego, CA, USA) (PLDI 2022). Association for Computing Machinery,
New York, NY, USA, 792–808. https://doi.org/10.1145/3519939.3523451

[5] Yotam MY Feldman, Artem Khyzha, Constantin Enea, Adam Morri-
son, Aleksandar Nanevski, Noam Rinetzky, and Sharon Shoham. 2020.
Proving Highly-Concurrent Traversals Correct. Proceedings of the
ACM on Programming Languages 4, OOPSLA (2020), 1–29.

[6] Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A
Correctness Condition for Concurrent Objects. ACM Trans. Program.
Lang. Syst. 12, 3 (jul 1990), 463–492. https://doi.org/10.1145/78969.
78972

[7] Bart Jacobs and Frank Piessens. 2011. ExpressiveModular Fine-Grained
Concurrency Specification. In Proceedings of the 38th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(Austin, Texas, USA) (POPL ’11). Association for ComputingMachinery,
New York, NY, USA, 271–282. https://doi.org/10.1145/1926385.1926417

[8] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.
2017. RustBelt: Securing the Foundations of the Rust Programming
Language. Proc. ACM Program. Lang. 2, POPL, Article 66 (dec 2017),
34 pages. https://doi.org/10.1145/3158154

[9] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron
Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris: Monoids and Invari-
ants as an Orthogonal Basis for Concurrent Reasoning. In Proceedings
of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles

https://zenodo.org/record/8337004
https://github.com/PrincetonUniversity/DeepSpecDB/tree/master/concurrency/templates
https://github.com/PrincetonUniversity/DeepSpecDB/tree/master/concurrency/templates
https://github.com/PrincetonUniversity/DeepSpecDB/tree/master/concurrency/templates
https://doi.org/10.1145/3473586
https://doi.org/10.1145/3519939.3523451
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/1926385.1926417
https://doi.org/10.1145/3158154

Compositional Verification of Concurrent C Programs with Search Structure Templates CPP ’24, January 15–16, 2024, London, UK

of Programming Languages, POPL 2015, Mumbai, India, January 15-17,
2015. ACM, 637–650. https://doi.org/10.1145/2676726.2676980

[10] Siddharth Krishna. 2019. Compositional Abstractions for Verifying
Concurrent Data Structures. Ph. D. Dissertation. New York University.

[11] Siddharth Krishna, Nisarg Patel, Dennis Shasha, and Thomas Wies.
2020. Verifying Concurrent Search Structure Templates. In Pro-
ceedings of the 41st ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (London, UK) (PLDI 2020). Asso-
ciation for Computing Machinery, New York, NY, USA, 181–196.
https://doi.org/10.1145/3385412.3386029

[12] Siddharth Krishna, Dennis Shasha, and Thomas Wies. 2017. Go with
the Flow: Compositional Abstractions for Concurrent Data Structures.
Proc. ACM Program. Lang. 2, POPL, Article 37 (dec 2017), 31 pages.
https://doi.org/10.1145/3158125

[13] Xavier Leroy. 2009. Formal Verification of a Realistic Compiler. Com-
mun. ACM 52, 7 (jul 2009), 107–115. https://doi.org/10.1145/1538788.
1538814

[14] William Mansky. 2022. Bringing Iris into the Verified Software
Toolchain. CoRR abs/2207.06574 (2022). https://doi.org/10.48550/
ARXIV.2207.06574

[15] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. 2012. Cache
Craftiness for Fast Multicore Key-Value Storage. In Proceedings of the
7th ACM European Conference on Computer Systems (Bern, Switzerland)
(EuroSys ’12). Association for Computing Machinery, New York, NY,
USA, 183–196. https://doi.org/10.1145/2168836.2168855

[16] Duc-Than Nguyen, Lennart Beringer, William Mansky, and Shengyi
Wang. 2023. Compositional Verification of Concurrent C Programs
with Search Structure Templates (Artifact). https://doi.org/10.5281/
zenodo.8337004

[17] Nisarg Patel, Siddharth Krishna, Dennis Shasha, and Thomas Wies.
2021. Verifying Concurrent Multicopy Search Structures. Proc. ACM
Program. Lang. 5, OOPSLA, Article 113 (oct 2021), 32 pages. https:
//doi.org/10.1145/3485490

[18] Ruzica Piskac, Thomas Wies, and Damien Zufferey. 2014. GRASShop-
per. In Tools and Algorithms for the Construction and Analysis of Systems,
Erika Ábrahám and Klaus Havelund (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 124–139.

[19] Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. 2015. Speci-
fying and Verifying Concurrent Algorithms with Histories and Subjec-
tivity. In Programming Languages and Systems - 24th European Sympo-
sium on Programming, ESOP 2015, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2015, London,
UK, April 11-18, 2015. Proceedings (Lecture Notes in Computer Science,
Vol. 9032). Springer, 333–358. https://doi.org/10.1007/978-3-662-46669-
8_14

[20] Roshan Sharma, Shengyi Wang, Alexander Oey, Anastasiia Evdoki-
mova, Lennart Beringer, and William Mansky. 2022. Proving Logical
Atomicity using Lock Invariants. (2022). Presented at Advances in
Separation Logic (ASL 2022).

[21] Dennis Shasha and Nathan Goodman. 1988. Concurrent Search Struc-
ture algorithms. ACM Transactions on Database Systems (TODS) 13, 1
(1988), 53–90.

[22] The Coq Development Team. 2022. The Coq Proof Assistant. https:
//doi.org/10.5281/zenodo.5846982

[23] Simon Friis Vindum, Dan Frumin, and Lars Birkedal. 2022. Mecha-
nized Verification of a Fine-Grained Concurrent Queue from Meta’s
Folly Library. In Proceedings of the 11th ACM SIGPLAN International
Conference on Certified Programs and Proofs (Philadelphia, PA, USA)
(CPP 2022). Association for Computing Machinery, New York, NY, USA,
100–115. https://doi.org/10.1145/3497775.3503689

[24] Xingbo Wu, Fan Ni, and Song Jiang. 2019. Wormhole: A Fast Ordered
Index for In-memory Data Management. In Proceedings of the Four-
teenth EuroSys Conference 2019. 1–16. https://doi.org/10.1145/3302424.
3303955

[25] Shale Xiong, Pedro da Rocha Pinto, Gian Ntzik, and Philippa Gardner.
2017. Abstract Specifications for Concurrent Maps. In Proceedings
of the 26th European Symposium on Programming (ESOP’17) (Lecture
Notes in Computer Science, Vol. 10201), Hongseok Yang (Ed.). Springer,
964–990. https://doi.org/10.1007/978-3-662-54434-1_36

A Proof Outlines for Templates (Sections
3.3.1 and 3.4.1)

Below are proof outlines for the traverse function for the
give-up template (Figure 9) as well as the insert function
for both templates. The complete proofs can be found in our
Coq mechanization (see Section 5).

Received 2023-09-19; accepted 2023-11-25

https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/3385412.3386029
https://doi.org/10.1145/3158125
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.48550/ARXIV.2207.06574
https://doi.org/10.48550/ARXIV.2207.06574
https://doi.org/10.1145/2168836.2168855
https://doi.org/10.5281/zenodo.8337004
https://doi.org/10.5281/zenodo.8337004
https://doi.org/10.1145/3485490
https://doi.org/10.1145/3485490
https://doi.org/10.1007/978-3-662-46669-8_14
https://doi.org/10.1007/978-3-662-46669-8_14
https://doi.org/10.5281/zenodo.5846982
https://doi.org/10.5281/zenodo.5846982
https://doi.org/10.1145/3497775.3503689
https://doi.org/10.1145/3302424.3303955
https://doi.org/10.1145/3302424.3303955
https://doi.org/10.1007/978-3-662-54434-1_36

CPP ’24, January 15–16, 2024, London, UK Duc-Than Nguyen, Lennart Beringer, William Mansky, and Shengyi Wang

∀𝑚.
〈
pn ↦→ (𝑝, 𝑛) ∗ In(𝑛)

�� Abs (𝑚)
〉

1 int traverse(pn *pn, int k){

2 node_t *r = (pn->n);
{

pn ↦→ (_, r) ∗ In(r)
}
⇛

{
traverse_inv(pn)

}
3 for(; ;){

{
traverse_inv

}
≜

{
∃ 𝑛′ . pn ↦→ (_, 𝑛′) ∗ In(𝑛′) ∗ In(r)

}
4 acquire(pn->n->lock);

5
{

pn ↦→ (_, 𝑛′) ∗ In(𝑛′) ∗ R(𝑛′) ∗ In(r)
}

6 pn ->p = pn->n;
{

pn ↦→ (𝑛′, 𝑛′) ∗ In(𝑛′) ∗ R(𝑛′) ∗ In(r)
}

7 if (inRange(pn, k) == 1){

8
{

k ∈ range ∗ pn ↦→ (𝑛′, 𝑛′) ∗ In(𝑛′) ∗ node_contents(𝑛′, 𝑐, range) ∗ In(r)
}

9 if (pn->p->t == NULL)

10 return 1;

11
{

k ∈ range ∗ pn ↦→ (𝑛′, 𝑛′) ∗ In(𝑛′) ∗ node_contents(𝑛′, ·, range)
}

12 else{

13
{

k ∈ range ∗ pn ↦→ (𝑛′, 𝑛′) ∗ In(𝑛′) ∗ node_contents(𝑛′, (𝑘 ′, 𝑣′), range) ∗ In(r)
}

14 int b = findNext(pn, k);

15
{

∃ 𝑛′′ . pn ↦→ (𝑛′, 𝑛′′) ∗ In(𝑛′) ∗ k ∈ range ∗ node_contents(𝑛′, (𝑘 ′, 𝑣′), range) ∗
In(r) ∗ ((b = 0 ∗ 𝑘 ′ = k ∗ 𝑛′′ = 𝑛′) ∨ (b = 1 ∗ In(𝑛′′)))

}
16 if (b == 0){

17
{

pn ↦→ (𝑛′, 𝑛′) ∗ 𝑘 ′ = k ∗ · · ·
}

18 return 0;

19
{

pn ↦→ (𝑛′, 𝑛′) ∗ In(𝑛′) ∗ k ∈ range′ ∗ node_contents(𝑛′, (k, 𝑣′), range)
}

20 }

21 else{

22
{

pn ↦→ (𝑛′, 𝑛′′) ∗ In(𝑛′) ∗ k ∈ range ∗ node_contents(𝑛′, (𝑘 ′, 𝑣′), range) ∗
In(𝑛′′) ∗ In(r)

}
23 release(pn->p->lock);

24
{

pn ↦→ (𝑛′, 𝑛′′) ∗ In(𝑛′) ∗ k ∈ range ∗ In(𝑛′′) ∗ In(r)
}

25 }

26 }

27 }

28 else{

29
{

pn ↦→ (𝑛′, 𝑛′) ∗ In(𝑛′) ∗ R(𝑛′) ∗ In(r)
}

30 release(pn->p->lock);

31
{

pn ↦→ (𝑛′, 𝑛′) ∗ In(𝑛′) ∗ In(r)
}

32 pn ->n = r;

33
{

pn ↦→ (𝑛′, r) ∗ In(r)
}

34 }

35 }

36 } 〈
res. ∃ 𝑛′, 𝑣 .

pn ↦→ (𝑛′, 𝑛′) ∗ In(𝑛′) ∗ k ∈ range ∗
(if res then node_contents(𝑛′, ·, range)

else node_contents(𝑛′, (k, 𝑣), range))

����� Abs (𝑚)
〉

Figure 9. Proof outline of the give-up traverse function

Compositional Verification of Concurrent C Programs with Search Structure Templates CPP ’24, January 15–16, 2024, London, UK

∀𝑚.
〈
Ref (r)

�� Abs (𝑚)
〉

1 void insert (node_t **r, int k, void *v){

2 struct pn *pn = (struct pn *) surely_malloc(sizeof *pn); pn->n = *r;

3
{

pn ↦→ (_, r) ∗ Ref (r)
}

4 acquire(pn->n->lock);

5
{

pn ↦→ (_, r) ∗ Ref (r) ∗ R(r)
}

6 if (traverse(pn, k) == 0){

7
{

∃ 𝑛′ . pn ↦→ (𝑛′, 𝑛′) ∗ Ref (𝑛′) ∗ node_contents(𝑛′, (k, 𝑣′), range)
}

8 pn ->p->t->value = v;

9
{

pn ↦→ (𝑛′, 𝑛′) ∗ Ref (𝑛′) ∗ node_contents(𝑛′, (k, v), range)
}

10 // Linearization point

11 }

12 else{

13
{

∃ 𝑛′ . pn ↦→ (𝑛′, 𝑛′) ∗ 𝑛′->t = NULL ∗ Ref (𝑛′) ∗ node_contents(𝑛′, ·, range) ∗ k ∈ range
}

14 insertOp(pn, k, v);

15
{

pn ↦→ (𝑛′, 𝑛′) ∗ Ref (𝑛′) ∗ node_contents(𝑛′, ·, range) ∗ k ∈ range ∗
𝑛′->t ↦→ (k, v, 𝑙, 𝑟 ′) ∗ 𝑙 ↦→ NULL ∗ 𝑟 ′ ↦→ NULL

}
16 // Linearization point

17
{

pn ↦→ (𝑛′, 𝑛′) ∗ Ref (𝑛′) ∗ node_contents(𝑛′, (k, v), range) ∗ k ∈ range
}

18 }

19
{

pn ↦→ (𝑛′, 𝑛′) ∗ Ref (𝑛′) ∗ R(𝑛′)
}

20 release(pn->n->lock);

21
{

pn ↦→ (𝑛′, 𝑛′) ∗ Ref (𝑛′)
}

22 free(pn);

23
{

Ref (𝑛′)
}

24 } 〈
Ref (r)

�� Abs (𝑚[k ↦→ v])
〉

(a) Proof outline of the lock-coupling insert function
∀𝑚.

〈
Ref (r)

�� Abs (𝑚)
〉

1 void insert (node_t **r, int k, void *v){

2 struct pn *pn = (struct pn *) surely_malloc(sizeof *pn); pn->n = *r;

3
{

pn ↦→ (_, r) ∗ In(r)
}

4 if (traverse(pn, k) == 0){

5
{

∃ 𝑛′ . pn ↦→ (𝑛′, 𝑛′) ∗ In(𝑛′) ∗ node_contents(𝑛′, (k, 𝑣′), range)
}

6 pn ->p->t->value = v;

7
{

pn ↦→ (𝑛′, 𝑛′) ∗ Ref (𝑛′) ∗ node_contents(𝑛′, (k, v), range)
}

8 // Linearization point

9 }

10 else{

11
{

∃ 𝑛′ . pn ↦→ (𝑛′, 𝑛′) ∗ 𝑛′->t = NULL ∗ In(𝑛′) ∗ node_contents(𝑛′, ·, range) ∗ k ∈ range
}

12 insertOp(pn, k, v);

13
{

pn ↦→ (𝑛′, 𝑛′) ∗ In(𝑛′) ∗ node_contents(𝑛′, ·, range) ∗ k ∈ range ∗
𝑛′->t ↦→ (k, v, 𝑙, 𝑟 ′) ∗ 𝑙 ↦→ NULL ∗ 𝑟 ′ ↦→ NULL

}
14 // Linearization point

15
{

pn ↦→ (𝑛′, 𝑛′) ∗ In(𝑛′) ∗ node_contents(𝑛′, (k, v), range) ∗ k ∈ range
}

16 }

17
{

pn ↦→ (𝑛′, 𝑛′) ∗ In(𝑛′) ∗ R(𝑛′)
}

18 release(pn->n->lock);

19
{

pn ↦→ (𝑛′, 𝑛′) ∗ In(𝑛′)
}

20 free(pn);

21
{

In(𝑛′)
}

22 } 〈
Ref (r)

�� Abs (𝑚[k ↦→ v])
〉

(b) Proof outline of the give-up insert function

Figure 10. Proof outlines for the insert function

	Abstract
	1 Introduction
	2 Background
	2.1 Concurrent Search Structure Templates
	2.2 Iris and VST

	3 Search Structure Templates in VST
	3.1 What is a Search Structure Template?
	3.2 Defining a Template
	3.3 Lock-Coupling Template
	3.4 Give-Up Template

	4 Verifying Binary Search Trees using Templates
	4.1 Instantiating findNext and insertOp
	4.2 Templates and Internal Reorganization

	5 Proof Mechanization
	6 Conclusion and Future Work
	Acknowledgments
	References
	A Proof Outlines for Templates (Sections 3.3.1 and 3.4.1)

